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The formula for transfer of 82-stuff across the 8-spectrum, which was obtained 
by Batchelor, Howells & Townsend (1959) for wave-numbers at which molecular 
conduction is important, is extended here to smaller wave-numbers by means 
of a simplified general picture of the mechanism involved. The interaction of 
velocity and temperature fields is represented by a combination of eddy con- 
ductivity due to the smaller eddies, and a straining action due to the larger 
eddies, and this leads to an approximate equation for the &spectrum, for a 
fluid of arbitrary Prandtl number, over at least the equilibrium range of wave- 
numbers. 

An earlier paper (Batchelor et al. 1959) on the spectrum function of a con- 
served scalar quantity 8 (such as temperature) in a turbulent fluid was concerned 
with the case of small Prandtl number, and gave a formula for an effective eddy 
conductivity due to low PBclet number components of the flow. This eddy con- 
ductivity K, due to velocity Fourier components having wave-numbers greater 
than n is such that the rate of transfer of @-stuff to wave-numbers greater than n 
is 2 ~ ,  times the mean square gradient of 8 associated with wave-numbers less 
than n, and was found to be 

where K is the molecular conductivity, G and E(n) are the rate of dissipation, and 
spectrum function, of kinetic energy. 

We notice that the eddy conductivity is inversely proportional to the molecular 
conductivity-in other words the effectiveness of the Fourier components in 
convecting heat down a gradient, or in transferring 82-stuff from lower wave- 
numbers, is limited by molecular conduction. The reason for this can be seen 
from an adaptation of the usual 'mixing-length, argument. A blob of hot fluid 
of size I ,  convected into colder fluid, loses its excess heat by conduction, in a 
time PK-~,  whereas in a high PBclet number flow, where conduction is not im- 
portant, the excess heat is lost in a distance 1. In  the latter case the eddy conduc- 
tivity due to wave-numbers greater than n( < el ~ - 2 )  is given by a formula such 
as 
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Now it is of interest to obtain one formula which includes both expressions 
(1) and (2). To do this we start from ( l ) ,  which is asymptotically exact, and con- 
sider how it is to  be extended to  PQclet numbers which are not small. Here the 
transfer of @-stuff from lower wave-numbers by velocity Fourier components is 
limited not only by molecular conduction but by the interference of other 
Fourier components, and, to make use of (l), we represent this interference as 
the effect of an eddy conductivity due to larger wave-numbers. That is, we re- 
place K in the integrand of (1) by K + K, (n) 

which leads to (3) 

At low PQclet numbers, equation (3) is equivalent to (l), and at  high PQclet 
numbers it agrees sufficiently well with (2). However, in (2) the square-root 
comes inside the integral, because of the supposition that each small element of 
the range of wave-numbers from n to 00 should make a separate and similar con- 
tribution to the eddy conductivity (carrying over by analogy the argument for 
eddy viscosity summarized in Batchelor 1953, $6.6). But this supposition im- 
plies that (2) should hold for all wave-numbers, in contradiction to (l), and when 
it is applied to the calculation of spectra the asymptotic forms obtained for 
n+m are negative powers of n, which are difficult to accept because they are 
inconsistent with the existence of all derivatives of the scalar field. In  the argu- 
ment leading to (3), the effect of each Fourier component involves the others, 
and this feature appears in the result, where the integral is inside the square 
root. The one general picture of the mechanism (although it is simplified) leads 
to a formula which includes the two limiting expressions, each in its range of 
validity. 

The eddy conductivity mechanism is not adequate to describe the entire 
transfer of @-stuff, since it neglects the straining action of the larger eddies, 
which is responsible for the transfer beyond the viscous cut-off in  the case of 
large Prandtl number (Batchelor 1959). The additional quantity which must be 
introduced is a rate of strain due to wave-numbers less than n, say {(n).  Then 
using the results of the above reference, and making the same sorts of approxi- 
mation as are involved in the eddy conductivity arguments, we write the con- 
tribution from this mechanism to the rate of transfer of B2-stuff across wave- 
number n as nC(n)r(n), where r ( n )  is the spectrum function of 8. { (n )  should be 
proportional to 3 [Ion nzE(n) an] , 

and the constant of proportionality must be chosen to be about 1/J2, in order to 
make {(m) agree with the value &J(s/v) used in the paper quoted for the quantity 
denoted there by -7. 

Combining these effects, we can write an equation for r ( n )  which should be 
valid in the same approximate way for all wave-numbers in the equilibrium 
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range (and possibly for part of the energy-containing range) and for all Prandtl 
numbers : 

It might be expected that something similar could be done for kinetic energy 
spectrum of turbulence-certainly the simple eddy viscosity approach is in error 
beyond the viscous cut-off. But there are two differences, one arising from the 
vector nature of the velocity field, and the other from the fact that it is inter- 
acting with itself. The problem of the magnetic field in a turbulent conducting 
fluid (when magnetic forces are not important) also differs from that of the scalar 
field in the first way, but not in the second; it is possible that its study may help 
elucidate some of the difficulties of the kinetic energy transfer in turbulence. 
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